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The prediction of confined jet mixing, which occurs in many processes from jet pumps to 
furnaces, is studied by testing and improving turbulence models. Numerical simulations 
of axisymmetric parabolic jet flows, with the two-equation k-~ eddy-viscosity model and 
the second-moment closure in its algebraic form (ASM),  are compared with 
measurements. This leads to the identification of defects that cause high rates of mixing, 
similar to those shown in earlier work with free jets. Modifications to the dissipation rate 
equation, proposed for the free jet, are addressed by examining the effects of 
anisotropy-related proposals and the sensitization to irrotational strains. The involvement 
of large structures in transport phenomena is also considered via bulk-convection-based 
models. A combination of 20 percent gradient diffusion and 80 percent bulk convection 
appears to mimic the transport process for turbulent energy reasonably well. The 
computations, made with a finite-difference/finite-volume parabolic solver with an 
efficient forward marching technique, show that there is still room for improvement in the 
modeling of jet flows, and some suggestions for further work are made. 
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I n t r o d u c t i o n  

The use of confined jet devices is important in many engineering 
applications such as in combustors and ejectors, which are used 
as pumps, in boundary-layer control, in noise suppression, and 
in thrust augmentors in both conventional and V/STOL 
aircraft. Confined jet flow involves momentum transfer from a 
discharging jet to a secondary stream; it can be considered in 
terms of several basic interacting flows, in which the primary 
jet flow represents the dominant component. 

The performance of computational fluid dynamics (CFD) 
turbulence models, when applied to jet flows, is usually assessed 
against the round free jet, since this bears some resemblance 
to the confined flow situation and has the advantages of possible 
self-preservation and a large volume of experimental data. The 
term free je t  is used to describe a jet exhausting into ambient 
surroundings. The round free jet has a persistent difficulty that 
has been attributed by Launder et al. (1984) and others partially 
to the weaknesses of the dissipation rate equation--namely the 
so-called "round jet anomaly," which is the prediction, 
incorrectly, of a similar rate of speed for both round and plane 
jets. In practice, the round free jet spreads some 20 percent less 
rapidly than the predicted rate. More anomalously, as discussed 
by Fu (1988), for example, for the case of the swirling round 
free jet the simulated rate of spread is less than that of the 
swirl-free round jet, while the opposite is true in practice. 

These anomalies appear to occur with all "standard" 
two-equation turbulence closures, such as the k-e and algebraic 
stress model (ASM). They can also occur when using Reynolds 
stress models (RSM). Measures to cure turbulence model 
defects are abundant in the literature and stretch from the 
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clearly unsatisfactory readjustment of basic constants, which 
affects the claim of universality of the model as demonstrated 
by Launder and Morse (1979), to more rational attempts to 
give a better representation of the spectral nature of turbulence 
by using two or more turbulence time and/or length scales, as 
has been described by Launder and Schiestel (1978). The 
difficulties of standard turbulence models when applied to 
axisymmetric free shear flows appear to be connected with (1) 
the existence of large-scale structures that are responsible for 
the shear-layer growth and entrainment ; and (2) the dissipation 
rate equation, which is widely accepted to be conceptually weak. 
These phenomena occur in all types of turbulent shear flow, so 
improvement in CFD closure schemes, derived from examining 
round jets, may well produce models with better physical 
realism when used with other types of turbulent shear flow. 

Generally, for the round free jet, attention has been focused 
on the dissipation rate equation. The performances of 
anisotropy-related modifications, incorporated in the equation, 
were examined by Huang, Launder, and Leschziner (1986) and 
Haroutunian, Ince, and Launder (1988). The implied 
assumption of a dominating small-eddy transport mechanism 
in the standard CFD models is also known to be physically 
invalid. The acceptance of this type of modeling stems mainly 
from the advantages that are brought to the numerical scheme 
when using two-equation models. Ribeiro and Whitelaw (1980) 
have found evidence from their investigations of swirling coaxial 
jets that the model of Bradshaw, Ferriss, and Atwell (1967) was 
more consistent with their results. This assumes the diffusive 
flux of turbulent energy to be proportional to energy times a 
local diffusive velocity characteristic of the large-scale motion. 
This "bulk convection velocity" V k was assumed to scale on 
the root square of the shear stress. However, an empirical 
similarity form for the distribution of Vk must also be assumed. 
In practice, V k should be related to the velocity fields in 
"typical" large eddies, but our conceptual and theoretical 
understanding of this linkage is too incomplete to formulate 
satisfactory deterministic closures on this basis. 

Biringen (1978) and Biringen and Abdol-Hamid (1985) used 
the approach of Bradshaw et al. (1967) to model jet flows, and 
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introduced a modified empirical function for the bulk 
convection velocity with negative values near the centerline and 
high positive values at the jet edge. This was said to be 
compatible with the idea that energy should be transported 
away from regions of maximum energy. Biringen (1978) also 
introduced the idea of bulk-convective transport of e, with a 
bulk-convection velocity 1I,. However, his empirical forms for 
Vk and V~ had no supporting experimental data for jet flows. 
The measurements of jet flows in a constant-area duct by Yule 
and Damou (1991) included data for V~, and these are used in 
the present investigation. 

The absence of good experimental data for the initial 
conditions is often regarded as an important factor causing 
variations in the performance of models. The present 
computations also benefit from the availability of the database 
of Yule and Damou (1991) and Damou (1988), which includes 
accurate descriptions of the initial conditions and early stages 
of flow development. The nozzle diameter was D = 8.7 mm and 
the duct radius was r ~ = 9 7 m m  in their experiments. 
Measurements were made using different values of the 
Craya-Curtet  dimensionless parameter Ct, which is based upon 
integrals of mass and momentum flux across the inlet plane of 
the duct (which is also the outlet plane of the jet nozzle): 

r ~ s lpAs  l 
Ct = LMj - m ~ s / P A s J  (1) 

The principal flows investigated by Yule and Damou (1991) 
were for cases with Ct = 1.7 and Ct = 4.0. A free jet (in ambient 
surroundings) has Ct = 0. Yule and Damou (1991) showed 
that a bulk convection assumption agreed with their data, and 
the present work thus devotes some effort to considering a 
large-scale transport-related bulk convection, where the 
bulk-convection velocity is assumed to scale on the square root 
of the maximum turbulent kinetic energy at any cross section 
of the jet. The role of the large structures in the transport 
phenomena is considered by evaluating the accuracy of both a 
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solely bulk-convection-based model and also a model 
combining partial contributions from both gradient diffusion 
and bulk convection: a combined bulk-convection/gradient- 
diffusion model (BC/GD).  A comparative study of the most 
important dissipation source-related modifications is also 
made. This paper thus has the objectives of testing previous 
model modifications, made on the basis of round free jet 
comparisons, in the confined jet situation and also of testing the 
bulk-convective and BC/GD-closure assumptions by making 
use of recent extensive turbulence data for this type of flow. 

T h e  s t a n d a r d  m o d e l s  

The two-equation k-e model, which specifies the turbulent 
viscosity, and the algebraic stress model (ASM), which takes 
into account the stress transport, are used with boundary-layer 
approximations of the equations, which are legitimate for these 
jet flows that lack recirculation zones and are thus parabolic 
in nature. 

The two.equat ion k-e model  

As described by Jones and Launder (1972), for example, the 
eddy-viscosity concept of Prandtl-Kolmogorov relates turbu- 
lent stresses to mean strains in a Boussinesq "gradient diffusion" 
form using an eddy viscosity v, that scales on velocity and length 
scales k U2 and Is so that v t = Cukl/21s and e = ka/2/I s so that 
v, = C~k2/e. The closure is achieved by solving transport 
equations for k and e (together with the Reynolds momentum 
equation), where 

- + + vt| T -  + e (2) 

Dt axkm\a:, , ~ OxkJ # \~-~xk -~xixiidx , k 
(3) 

N o t a t i o n  

a j  

As 
b 

C 

Ct 
D 
k 
km 
Is 
thj 

M., 
Ms 

P 

P 
r 
rs 
s ,  
U 
u, 

Cross-sectional area of nozzle 
Cross-sectional area of confining duct 
Jet half-width; radial distance to position where 
v = cr~ + (VcL - v2)/2 
Basic coefficient in gradient diffusion assump- 
tion 
Craya-Curtet  parameter 
Nozzle diameter 
Turbulent energy; k = ½(u s + v 2 + w 2) 
Maximum turbulent energy 
Turbulence length scale 
Mass flow rate through nozzle 
Mass flow rate through inlet of confining duct 
Momentum flow rate through nozzle 
Momentum flow rate through inlet of confining 
duct 
Mean static pressure 
Rate of production of/:  
Production tensor of uiu~ 
Fluctuating component of static pressure 
Radial distance from centerline of ducted jet 
Radius of duet 
Source term of general variable 
Mean velocity component in x-direction 
"ith" component of mean velocity 

UCL 

U, U, W 

Ui 

Ul) m 
V 
v~ 
v, 
X 

Xi 

Centerline mean velocity 
Jet exit (centerline) velocity 
Secondary stream velocity at duct inlet 
Secondary stream velocity, distance x down- 
stream 
Longitudinal, radial, and azimuthal components 
of fluctuating velocity 
"ith" component of fluctuating velocity 
Maximum shear stress at a jet cross section 
Mean velocity component in the r direction 
Bulk convection velocity for k 
Bulk convection velocity for 
Longitudinal distance from nozzle exit plane 
"ith" component of position vector 

Greek symbols  

Proportion of turbulent diffusion due to bulk 
convection 

e Rate of dissipation of turbulent energy, per unit 
volume of fluid 

~5 u Kronecker delta 
v, and vm Kinematic turbulent (or eddy) and laminar 

viscosity 
p Fluid density 

General scalar variable 
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Table 1 The constants of the two-equation k-e model 

C u C~1 CE2 o',,, O'k. t 0"~,, os, t 

0.09 1.44 1.92 1.0 1.0 1.0 1.25 

Table 1 gives commonly accepted values for the coefficients 
in these equations. Turbulent diffusion of k, the first term on 
the right-hand side of Equation 2, is modeled by a gradient 
diffusion, pv, which occurs in the full equation, is not explicitly 
modeled. Equation 3 also models the diffusion of e by using a 
gradient diffusion assumption. 

The algebraic stress m o d e / ( A S M )  

The ASM is a procedure for solving transport equations for 
all individual Reynolds stresses. The variant of Rodi (1972) 
assumes proportionality between the net transport of each stress 
and the corresponding transport of k, which yields 

uiuj (Pk -- s) = (1 -- C2)Pij + Z3C 2 6i~P k 
k 

F , - -  
-- C 1 ~uiu  j + 2 ( C  1 - 1)3qe ( 4 )  

where C~ = 1.8 and C2 = 0.6. Substituting expressions for P~j 
into Equation 4 yields a set of algebraic equations that relates 
the Reynolds stresses, u 2, v 2, w 2, and uv. 

The wall treatment 

The economical "wall functions" method outlined by Launder 
and Spalding (1974) is used here. This approach is adequate 
for the ducted jet flows of Yule and Damou (1991), for which 
the initial boundary-layer thickness was less than 2 percent of 
the duct diameter. 

The numerical procedure 

The general equations for steady axisymmetric flow of the 
boundary-layer type reduce to the following forms : 

Continuity : 
OpU 1 OprV 
- - +  - 0  (5) 
0x r 0r 

Momentum : 
OpU 2 1 OrpUV dP 1 O [" OU 
- -  + - + - i r  u - rpuv (6) / Ox r Or dx r \ 

OpU~ 1 OprVffJ 1 O ,/" Od9 
---t-Ox r - - O r  -- - o r l - - r r °  ~r + rp~v + \ J (7) 

Equation 7 can represent Equations 2 or 3 by choosing * = k 
and_~ = e, respectively, and inserting gradient diffusion models 
for kv and vs. 

In the PASSABLE code of Leschziner (1981) that has been 
employed here, the general equations are discretized using the 
finite-control volume approach. A nonuniform orthogonal grid 
is used, with more nodes near the wall and in the central jet 
zone. The axial velocity component U and scalars P, k, and e 
have a common control volume. The radial mean-velocity 
component V is staggered midway between nodal locations, 
which provides advantages for the formulation of the continuity 
equation from which V is obtained. Approximations are made 

to yield a set of algebraic equations that can be illustrated for 
q~j, which represents a vector whose components consist of the 
nodal values at the downstream location: 

d d d d d d A i ~  j = A~qJ~ + Aj+lqJj+l + Aj_lqJj_l + B~ (8) 

where A t are flux coefficients that consist of a combination of 
convective and diffusive contributions, and B~ represents the 
source term, which is made to adopt a linear form to promote 
the stability of the solution algorithm. The hybrid difference 
scheme (HDS) was used as described by Leschziner (1981). 

The solution of the momentum equation requires knowledge 
of the pressure gradients. The treatment in the code uses, 
initially, the pressure gradient of the upstream station. This 
results in a velocity distribution that will not necessarily satisfy 
overall mass conservation. The aim is therefore to iterate and 
reduce to zero the amount of mass flux imbalance. The 
finite-difference equations for the variables U, k, and s are solved 
by the tridiagonal matrix algorithm (TDMA) in the form of a 
transformation of the set of equations into a general recurrence 
relation for ulj. Approximately 60 nodes across the flow, from 
the centerline, were found to give grid-independent solutions. 
All computations reported here were carried out using 80 nodes, 
also, approximately 1,000 steps downstream were taken to 
cover the flow regime. 

M o d i f i c a t i o n s  o f  t h e  s t a n d a r d  m o d e l s  

Dissipation source related modifications 

The dissipation source term is the second term on the right-hand 
side of Equation 3. Several modifications have been used and 
applied to the round free jet :  

(1) The correction of Pope (1978) assumes an extra source for 
e (which is zero for plane flows): 

4 \ s , /  \ d r  Ox /  r (9) 

where 

C[ = 0.79 

(2) Hanjalic and Launder (1980) added the term 

ou~ au, 
SijkSlmkk ~ -  ~ (10)  

OXj OX m 

(3) Khajeh-Nouri and Lumley (1973) replaced the generation 
of k, which occurs in the s source term, with a term containing 
the second invariant of the anisotropy, so that the generation 
term becomes 

S 2 
lk __ (11) C~ A2 k 

where Ct~ k = 4.27 and A2 represents the second invariant of the 
isotropy tensor defined as A 2 = ( u i u i - 2 6 i i k ) 2 / k  2. This 
modification is applied to the ASM model. 
(4) Lumley and Zeman (1979) allowed a share in the 
determination of the generation of s, between the generation 
of k and the anisotropy-dependent contribution. The modified 
term was 

C z l l ~  + C z l  A 2  s 2 

1 + 1.5A2 k 

where 

C~ zl = 0.475 and Ce zi = 5.46 

(12) 
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A c c o u n t i n g  for the large eddies in turbu lent  transport 

Al l  standard models assume, at cr i t ical  points in their  closures, 
the representation of turbulent diffusion by a gradient diffusion 
process. This incorrectly implies that the small-scale eddies 
dominate turbulent transport. Attempts to remove this physical 
shortcoming have been made based on the definition of a 
bulk-convection velocity Vk which is attributable to the 
"sweeping" transport by the large eddies. For the transport of 
k, one has 

kv = C Vkk (13) 

where C is usually consolidated in V k and taken as unity. Yule 
and Damou (1991) proposed 

Vk = k i /2 f ( r /b )  (14) 

Figure I shows that data for Ct = 1.7 and f ( r / b )  (i.e., kv/kk~/2 ) 
are found to tend towards a similarity form, which is the same 
for the different jet flows. 

Bradshaw et al. (1967) assumed a scaling on (uv)i/2, rather 
than ..,,/,1/2, when considering bulk-convective transport in a 
boundary layer. Biringen (1978) followed this example when 
considering round jets in constant velocity streams. The 
distribution of V k of Biringen was not based directly upon 
measurements, and as can be seen in Figure 1, it does not agree 
well with jet data. 

Equation 13 assumes that all diffusion of k is by the 
bulk-convective mechanism. In reality one should envisage 
contributions from both bulk-convective (large-eddy-related) 
diffusion and gradient (small/medium-eddy-related) diffusion. 
The partitioning of diffusion between the two processes has 
been examined by using the following approximation for 
combined BC/GD. This hypothesis has been discussed by 
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f ( r / b )  . + 
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4, 

I I I 

2 

r/b 
Figure 1 Normalized bulk convection velocity for Ct = 1.7, the 
assumed distribution for f ( r /b ) ,  and the distribution based upon 
Biringen's ( 1978 ) assumption for V k. From Yule and Damou ( 1991 ) 
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several authors in the past, but it has seldom been utilized: 

kv = ctCVkk + (1 - ct)C~k2e-l~k/ar (15) 

Thus, for example, a constant value ct = 0.8 throughout the 
flow corresponds to 80 percent of diffusion by convective 
transport and 20 percent by gradient diffusive transport, with 
no changes in turbulent energy spectrum. This 20:80 percentage 
ratio between gradient diffusive and bulk-convective diffusion 
was also assumed by Biringen and Abdol-Hamid (1985); 
however, there is no firm justification for a fixed ratio for all 
jets nor, indeed, for all positions in one jet. The 20:80 percentage 
ratio does appear to have a degree of realism, since the spectra 
of Damou (1988) show a similar ratio of the energy content 
of turbulence length scales equal to 1/20th of the jet half-width. 
Ideally a two-length-scale/two-energy-scale approach would 
seem to be called for, in which the closure hypotheses for the 
two mechanisms have their own scaling parameters. This would 
be a development of the two-scale closure described by Launder 
and Schiestel (1978) and Schiestel (1983), and the effect would 
be an approximate modeling of changes in the shape of the 
wave number spectrum of the turbulent energy. The division 
between gradient and bulk-convective transport would thus be 
provided by solution, rather than by assumption. 

Results 

The initial conditions of the ducted jets were derived from the 
measurements of U, uv, and k of Yule and Damou (1991). In 
the high-velocity gradient region near the jet nozzle, where 
cross-wire hot-wire probes are inaccurate, it was assumed 
k = (3/2)u 2. However, uv is known in this region, due to the 
jet exit flow being a fully developed turbulent pipe flow. Figure 
2 gives an illustration of comparisons between predictions and 
data for the streamwise evolution of the centerline velocity UcL 
for the ducted jet with Ct = 1.7, for which Uj = 144 m/s and 
Us = 11.4 m/s. The results of the k-e model in Figure 2 indicate 
the prediction of too much mixing with an overprediction of 
both the velocity decay and rate of spread for the unattached 
jet. This is similar to the round jet anomaly observed for the 
free round jet. Downstream of approximately x = 5% (i.e., 
x = 55D), the jet spreading is influenced by the duct wall 
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Figure 2 Measured and predicted centerline velocity decay for 
ducted jet with Ct = 1.7, including standard k-s model, Pope's 
(1978) modification, and Hanjalic and Launder's (1980) 
modification 
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boundary layer and the k-8 prediction becomes excellent as the 
flow tends towards a pipe flow. The inclusion of the correction 
of Hanjalic and Launder (1980), as seen in Figure 2, appears 
to offer a marginal improvement of the prediction of the 
unattached jet when compared with the velocity measurements. 
This is in accordance with the relative absence of strong normal 
strain rates for this ducted jet compared with the round free 
jet. One may conclude that the "irrotational deformation" effect 
is not a major source of the round jet anomaly. 

As can be seen in Figure 2, the modification of Pope (1978) 
yields a slight overcorrection that implies less mixing than the 
experimental observation. This also agrees with the results of 
Huang (1986), who applied Pope's modification to the free jet. 
There is also some slight underestimate of the velocity decay 
as the jet-wall boundary-layer interaction commences, around 
x"~55D (x~5rs ) .  It is clear, however, that Pope's 
modification gives a very reasonable prediction of the centerline 
velocity decay of the ducted jet for Ct = 1.7, and a similarly 
good agreement was found with the other main jet flow of Yule 
and Damou (1991) with Ct = 4.0. 

Figure 3 makes a further comparison of the data for Ct = 1.7, 
with the ASM model and also the modified ASM models of 
Lumley and Khajeh Nouri (1973) and Zeman and Lumley 
(1979). The unacceptable performance of the ASM model in 
this situation is highlighted in Figure 3, where a greater 
overprediction of jet decay than for the k-~ model can be seen. 
This is in accord with ASM predictions of the round free jet 
in still surroundings, which have also been found to be poor. 
The two Lumley modifications both overpredict the unattached 
jet decay initially; however, they then quite rapidly adjust to 
reasonable predictions beyond x - 6r s, i.e., x - 65D. 

In these ASM modifications the inclusion of anisotropy in 
the dissipation rate equation produces numerically related 
difficulties. The decoupling of the turbulence energy and its rate 
of dissipation produced a numerical weakness that materialized 
as solution convergence instabilities. Consequently, some 
measures were taken to circumvent these difficulties: (1) 
limiting the level of anisotropy permitted in the early stages of 
the flow development; and (2) increasing the degree of 
implicitness in the solution by using strong underrelaxation 
factors and augmenting the number of in-step iterations. Both 
anisotropy corrections yield an initial, even faster decay of the 
centerline velocity than both the standard ASM and the 
standard k-~ models. However, the modified models predict less 
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Figure 3 Measured and predicted centerline velocity decay for 
ducted jet with Ct = 1.7, including standard ASM, Lumley and 
Khajeh Nouri's (1974) modification (A) ,  and Zeman and Lumley's 
( 1979 ) modification ( B ) 
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Figure 4 Measured and predicted centarline velocity decay for 
ducted jet with Ct = 1.7, including standard k-~ model, "pure'" 
bulk-convection model (Equation 13), and BC/GD model 
( Equation 15) 

rapid mixing than the experiment in the downstream region of 
the flow. Comparatively, the correction of Zeman and Lumley 
(1979) is slightly closer to the experimental observations. 
However, one may conclude from the failure of these models 
to predict the ducted jet flow, as well as the free jet flow, that 
anisotropy effects are not the principal reasons for differences 
between measured and computed jet flows, at least when such 
effects are implemented in an ASM model. 

As shown in Figure 4, the large-eddy-related model that uses 
the "pure" bulk-convection hypothesis for the diffusive 
transport of k, i.e., Equations 13 and 15, predicts slightly smaller 
rates of mixing than the experimental values for x > 1.5rs, i.e., 
x >  17D. As can be seen in Figure 4, although the 
bulk-convection model is very much more accurate than the 
standard k-e model near the nozzle, it produces increasingly 
less accurate predictions far downstream as the flow tends 
towards a pipe flow. Figure 4 also includes the predictions of 
the combined BC/GD assumption for kv, as given by Equation 
15 with the value ~ = 0.8; i.e., 80 percent of diffusive transport 
of k is assumed to be due to bulk convection. It can be seen 
that the BC/GD prediction has an excellent degree of accuracy 
throughout the jet length and that it is, overall, of similar 
accuracy to the best of the dissipation equation modifications, 
i.e., Pope's (1978) modification. Similar results are obtained 
when the predictions of the various modified models are 
compared with the other principal ducted jet flow of Yule and 
Damou (1991) with Ct =4.0,  for which U j=  l l 5 m / s  and 
U s = 19.0 m/s. Figure 5 shows comparisons between predic- 
tions and measurements for this flow and, as for the Pope 
modification, the only discrepancy is a very slight underestimate 
of the rate of decay of the jet in the far downstream pipe flow 
zone. The jet with Ct = 4.0 is a "weak" jet flow, with relatively 
low excess velocity in the duct. It thus should have some 
similarity with an axisymmetric wake. Both the Pope and 
BC/GD models thus appear to perform reasonably across the 
full spectrum of strong and weak confined jets. 

Only the centerline velocity decay has been shown here, and 
this could in some cases be misleading : for example, if a model 
does not correctly predict the shape of the velocity profile. This 
is the case for the ASM model, for which the predicted jet 
velocity profile is excessively flat in the central part of the jet. 
Figure 6 shows the mean velocity profiles at x = 116 mm and 
x = 266mm measured by Yule and Damou (1991) and the 
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Figure 5 Measured and predicted centerline velocity decay for 
ducted jet with Ct = 4 .0 ,  including standard k-~ model, "pure'" 
bulk-convection model, and BC/GD model 

predictions of the standard k-e model and the BC/GD k-e 
model. The latter model is seen to provide a very good 
prediction of U for the complete width of the jet. The standard 
k-e model provides a good prediction of the shape of the velocity 
profile across the jet, but not the rate of spread. It is also seen 
that the k-e model gives an adequate prediction of the wall 
boundary layer for the flow. No attempt has been made to 
apply the "corrected" models outside the confines of the jet 
flow so that the "standard" models are applied in the secondary 
flow and wall boundary layer. The empirical form for Vk has 
been derived from data for unattached jets. Thus a problem 
arises when jet-duct boundary-layer interaction occurs 
downstream in the duct. In the absence, as yet, of a "universal" 
approach to bulk-convective modeling, it was necessary to 
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"switch" from the bulk-convective scheme to the standard 
model where direct interaction occurred. 

The jet "half-width" b is an important parameter for 
characterizing the jet. Figure 7 shows the measurements of b, 
for the two ducted jet flows, compared with the predictions of 
the standard k-s model and the BC/GD and Pope modified 
models. It is seen that the Pope modification is in excellent 
agreement with all the data. The BC/GD modification provides 
somewhat less accurate predictions of b, but these are shown 
to be very much better than the standard k-~ results. 

D i s c u s s i o n  

It is clear that the ducted jet flows offer similar problems for 
standard CFD codes as those presented by the round free jet. 
It is also clear that of the various modifications that have been 
considered (most of which are optimized to provide agreement 
with the round free jet), the mean vortex-stretching 
modification of Pope (1978), Equation 9, and the combined 
BC/GD approach, Equation 15, provide the best agreement 
between prediction and experiment for the ducted jets. It is not 
the case, of course, that only one of these approaches should 
be correct. Indeed, both approaches attempt to include, within 
the equations, submodels of phenomena that are known to 
exist; they should thus produce increased physical realism, 
which is an essential objective in CFD model development. 
One may thus propose that some combination of both 
modifications should be included in the equations, although 
the experimental database is insufficient to propose such a 
combination with any degree of confidence. 

The Pope modification is quite straightforward to imple- 
ment; however, the user must ensure that the computer code 
gives zero value to the term in plane flows. The BC/GD 
modification must, if its underlying hypothesis is correct, be 
applicable to all types of turbulent shear flow, and it is here 
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that very much more conceptual and data analysis work is 
required• The combined BC/GD hypothesis was found to have 
further advantages over the closure using "pure" bulk 
convection due to better numerical stability and the need for 
fewer iterations. 

The form of V k, represented by the function f ( r / ) ,  has been 
deduced from measurements of kr and k for the ducted jets. It 
should be noted that, when implemented in the computations, 
the function was written for convenience in the form f ( r / I s )  
rather than f ( r / b ) :  in practice, Is ( = e-lk3/Z) has insignificant 
radial variation across the jet. Two further important tests were 
made of the bulk-convective assumption. In the first, the 
BC/GD-modified k-e model was used to predict the 
downstream zone of a self-preserving round free jet, using the 
distribution of Vk found for the ducted jets. A spreading rate 
of db/dx = 0.085 was found, which compares well with the 
value db/dx = 0.086 measured by Wygnanski and Fiedler 
(1969). This is a significant improvement over the value 
db/dx = 0.119 predicted by the standard k-e model. The second 
test involved a comparison with the case of a plane jet. The 
same distribution of Vk was used to predict this case, and a 
value db/dx = 0.109 was found that compares well with the 
value db/dx = 0.110 given by Rodi (1972). It is noted that 
there are insufficient published data for the plane jet to verify 
that f ( r / b )  is similar for the round and plane jet cases. 

These results show the promising nature of the ideas behind 
bulk-convective closures. However, problems remain, one being 
the empirical nature of the shape of the bulk-convection velocity 
distribution• A satisfactory closure should relate this distribu- 
tion in a deterministic and physically meaningful way to 
parameters of the local flow. It is possible that the effects of 
intermittency and, perhaps, the encroachment of large eddies, 
with opposite sign, from one side of the jet to the other must 
be considered in such a formulation• A further difficulty is 
brought about by the need to formulate bulk-convective 
closures for other terms in the equations, including uv and the 
equivalent term for the e equation• Biringen (1978) utilized an 
empirical bulk-convective closure for the e equation, but once 
again the shape of the bulk-convection velocity profile requires 

justification• There is no intrinsic reason why the bulk- 
convection velocities for momentum, turbulent energy, and 
dissipation rate should be equal, and the linkage between bulk 
convective assumptions for the three dependent variables 
should be some average velocity pattern for the larger eddies, 
which are principally responsible for "diffusive" transport• This 
interesting area is in need of considerable experimental and 
modeling investigation before a satisfactory bulk-convective 
closure is achieved. 

Conclusions 

The standard k-e and ASM models exhibit errors in the 
prediction of ducted jets that are similar to those found in 
earlier studies of round free jets. The various published methods 
of correcting the round free jet /plane jet anomaly have been 
studied for the case of ducted jets. The vortex-stretching 
dissipation source correction of Pope appears to be the most 
successful of the different methods, and it is recommended for 
general use with axisymmetric jet flows, with and without 
confinement. A combined bulk-convection gradient-diffusion 
closure of the k-e model, based upon measurements by the 
authors, is also found to give satisfactory predictions of the 
ducted jets while giving good predictions of the round free jet 
and also the plane free jet. 
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